Energetics of chain folding in polyethylene crystals*

R. S. Dav6

Michigan Molecular Institute, Midland, MI 48640, USA

and **B. L. Farmert**

Department of Materials Science, University of Virginia, Charlottesville, VA 22901, USA (Received 6 October 1987; revised 13 November 1987; accepted 4 December 1987)

Semi-empirical energy calculations have been used to investigate several aspects of chain folding in polyethylene single crystals. Calculations of isolated (1 10) and (2 0 0) folds indicate that the fold energy, relative to the planar zig-zag form of the molecule, is lower in the (200) fold than in the (110) fold. The minimum surface energies for isolated (1 10) and (200) folds were calculated to be 102.5 and 95.6 erg cm⁻ respectively. The energetics of packing the minimum-energy folds into an array representing a portion of a single-crystal fold surface were also investigated. For fully optimized (1 10) fold packing, the habit corresponding to the Reneker-Geil model I (RG I) was found to be lower in energy than model RG II. However, the packing of (1 10) folds at experimentally observed unit-cell dimensions in RG I and RG II packing habits gave almost equal packing energies. It was also found that the setting angle was a function of the packing habit. Results of packing (200) folds into a fold surface indicate that a crystallographically reasonable '(2 0 0)'-type fold surface would appear to be impossible. The interaction energy of a straight-chain segment in the vicinity of a fold surface was also calculated. Not surprisingly, it was found that the lowestenergy situation finds the straight chain somewhat nestled into a groove between the { 1 10} fold planes.

(Keywords: chain folding; polyethylene crystals; energeties)

solution, they usually do so in the form of individual the edge to be about 32° from crystals that had folded microscopic crystals that exhibit varying degrees of along a domain boundary, and predicted that the fold microscopic crystals that exhibit varying degrees of along a domain boundary, and predicted that the fold morphological complexity depending on the temperature surface was $\{(1\ 1\ 1)(1\ 1\ 0)\}$. To understand the habit morphological complexity depending on the temperature surface was $\{(1\ 1\ 1)(1\ 10)\}$. To understand the habit of crystallization¹⁻³, the solvent used⁴⁻⁸, the molecular features of the crystal, Reneker and Geil⁷ dev of crystallization¹⁻³, the solvent used ⁴⁻⁸, the molecular features of the crystal, Reneker and Geil' developed weight^{1,5,6,9,10} and concentration^{1,11}. The simplest models for fold packing in the (110) plane. These models entity obtained when linear polymers like polyethylene are the basis of the packing arrangements considered in are crystallized is the monolayer crystal.
The existence of notumer single crystals was first In this paper, the convention adopted in describing the

discovered by Jaccodine⁴, but their basic molecular packing habit follows that of Bassett, Frank and Keller¹¹.
nature remained unexplained until Keller's work⁶ in A 'fold surface' is defined as being the surface of nature remained unexplained until Keller's work⁶ in A 'fold surface' is defined as being the surface of the crystal
1957. Based on his studies of the properties of single tangent to the folds and labelled with the indic 1957. Based on his studies of the properties of single tangent to the folds and labelled with the indices of both ϵ crystals, Keller concluded that the polymer molecules in the fold surface and growth face. Thus, a $\{(1\ 1\ 1)(1\ 1\ 0)\}$
the crystals, were folded, back, upon, themselves. His crystal is a flat-based, pyramidal, diamond-s the crystals were folded back upon themselves. His crystal is a flat-based, pyramidal, diamond-shaped crystal conclusions are strongly supported by subsequent having $\{1\,1\}$ fold surfaces and $\{1\,10\}$ growth faces, conclusions are strongly supported by subsequent having $\{11\}$ fold surfaces and $\{110\}$ growth faces, the morphology and fold structure studies on polyethylene four individual fold domains being $(11)(110)$, morphology and fold structure studies on polyethylene four individual fold domains being (1 1 1)(1 10), crystals^{1-3,5-20}. (1 1)(110), (1 1)(110), (1 11)(110) and (1 1 1)(110). Two other

microscopy^{2,7,11,13,14}, it has been shown that some and fold. A 'chain-folded molecule' is any long-chain
crystals of polyethylene are not flat lamellae but actually molecule that folds and loops back on itself, whereas crystals of polyethylene are not flat lamellae but actually molecule that folds and loops back on itself, whereas a
consist of hollow pyramids with four or more sectors. The "fold' specifically refers to the folded portion consist of hollow pyramids with four or more sectors. The 'fold' specifically refers to the folded portion of the chain-
surfaces of these crystals are either smooth or corrugated folded molecule. Figure 1 shows two chainsurfaces of these crystals are either smooth or corrugated folded molecule. *Figure I* shows two chain-folded depending on the method and conditions used for crystal molecules, each of 20 methylene units. The fold shown in depending on the method and conditions used for crystal molecules, each of 20 methylene units. The fold shown in
preparation. Also, the slope of the pyramid along a line Figure 1a, consisting of C-C bonds labelled 1-7, is preparation. Also, the slope of the pyramid along a line *Figure 1a*, consisting of C-C bonds labelled 1-7, is a normal to the edge was found to vary among different (110) fold, whereas the fold shown in *Figure 1b*, normal to the edge was found to vary among different (1 10) fold, whereas the fold shown in *Figure 1b*,
crystals and to denend on the habit of the crystal. Bassett. consisting of C-C atoms labelled 1-8, is a (200) fold. crystals and to depend on the habit of the crystal. Bassett, consisting of C-C atoms labelled $1-8$, is a (200) fold. The Frank and Keller² found by X-ray diffraction that the fold setting angle, defined as the angle th Frank and Keller² found by X-ray diffraction that the fold setting angle, defined as the angle that the plane of the C-C
surfaces of polyethylene crystals formed at high and low backbone of the stem makes with the b axi surfaces of polyethylene crystals formed at high and low backbone of the stem makes with the b axis, is shown as
supercooling were $\{(3, 14)(1, 10)\}$ and $\{(3, 12)(1, 10)\}$ θ in Figure 1. Another distinction that we woul supercooling were $\{(314)(110)\}$ and $\{(312)(110)\}$,

INTRODUCTION respectively. Reneker and Geil⁷ and Niegisch and Swan¹⁴ When linear-chain polymers crystallize from dilute calculated the slope of the pyramid along a line normal to solution, they usually do so in the form of individual the edge to be about 32° from crystals that had fol

The existence of polymer single crystals was first $\frac{1}{2}$ In this paper, the convention adopted in describing the sequenced by Laccodine⁴ but their basic molecular packing habit follows that of Bassett, Frank and Kel By means of dark-field electron and dark-field optical terms that need to be defined are chain-folded molecule is any long-chain interpretation of that some and fold. A 'chain-folded molecule' is any long-chain make is between an isolated fold and a fold packed into a *This work was carried out at Washington State University fold surface. An 'isolated fold' is a single fold all by itself, t To whom correspondence should be addressed as shown in *Figures la* and lb, whereas a 'fold packed into

with the setting angle, θ , defined with respect to the b axis. (Hydrogen Boyd²³, Reneker²⁴ and Farmer and coworkers²⁵ to study atoms have been omitted for clarity.) Lower diagram: projection of the the defects an (110) fold onto a (010) plane. (b) Upper diagram: top view of the (200) (1 0 y/ou with the unit cell with the setting angle, 0, defined with respect to the b or semicrystalline polymers. Polyethylene is an ideal fold in the unit cell with the setting angle, θ , defined with respect to the b axis. (Hydrogen atoms have been omitted for clarity.) Lower diagram: projection of the (200) fold onto a (100) plane

features of a single crystal of polyethylene was established the solvent and temperature (unless potential energy
in the sorly 1960s, there was no direct experimental proof functions for different temperatures are availabl in the early 1960s, there was no direct experimental proof of tight chain folds in crystals of long linear molecules until recent years^{15,17}. Jing and Krimm¹⁵ found from i.r. spectra of mixed single crystals of hydrogenated and $W_{\text{fork of}}$ deuterated polyethylene grown from dilute solution that chain folding, q adjacent-stem cluster size, $\langle v_c \rangle$, is 4 to 8 in both the {110} and ${200}$ sectors, leading to a probability of adjacent reentry $P_{ar} = 1-1/\langle v_c \rangle$ of 0.75 or more. This evidence $P_0 \sim \sqrt{A_0} \sqrt{A_0} \sqrt{A_0}$ implies tight folds. Strong evidence of tight folding was also found by Ungar and Organ¹⁷. They have made the $\frac{1}{a_0}$ first direct observation of i.r. bands due to adjacent $(1\,1\,0)$ chain folds in polymethylene. Based on their spectral and the chain spectral and the data, they assigned *gauche* or *trans* bond rotation angles to the fold conformation of a (110) fold. (We shall later

In the absence of direct experimental proof on the *~_ \Gauche~ f__Gauche/* configuration of a tight chain fold, several groups¹⁸⁻²¹ tried to simulate tight chain folds by energetics calculations. Essentially, the technique of energetics \mathbf{b} $\tilde{\mathbf{c}}$ | $\ddot{\mathbf{c}}$ / *Trans* calculations is computerized model building and $\overline{1}$ $\$ folding can be further clarified with the aid of *Figure 2*, which is reproduced from ref. 22. *Figure 2a* shows a fold Figure 2 Molecular basis of work of chain folding. (From ref. 22 with with work of formation q formed by bending a chain back permission)

 $\mathbf a$ b on itself to re-enter the lattice, creating a fold surface with area $2A_0$, where $a_0b_0 = A_0$ is the cross-sectional area of the chain with a_0 and b_0 as stem width and thickness. *a Figure 2b* shows the potential energy of a segment as it rotates through angle ϕ about the bond between the *i*th and the $(i + 1)$ th chain backbone atom. The angle ϕ is \mathbf{b} h measured from the plane determined by the $i-1$, i and i + 1 atoms as shown. The barriers between the *trans* and *12/~3~ i24~ gauche* positions, and the potential energy of the *gauche* positions, arise from the substituent groups on the $(i+1)$ th atom interacting with the *i*th atom. In polyethylene, a sequence of *trans* rotations represents the straight chain found in the interior of the crystal. The fold contains at least several *gauche* rotations that are the principal source of the work of chain folding q .

> Having seen the significance of energetics analysis in the determination of q for polyethylene, we must now ask how this value is to be interpreted in terms of the fold surface interfacial free energy, σ_e . Hoffman *et al.*²² have shown that σ_e is related to q as follows:

$$
\sigma_{\rm e} = (q/2A_0) + \sigma_{\rm e0} \tag{1}
$$

where q is the work required to form the fold by bending the polymer chain back on itself in the appropriate conformation. The term $\sigma_{\rm e0}$ is the value the surface free \overrightarrow{a} energy would assume if no work were required to form the fold and can be approximated to be equal to $zero^{22}$.

Figure 1 (a) Upper diagram: top view of the (110) fold in the unit cell Energetics analysis has previously been applied by with the setting angle, θ , defined with respect to the b axis. (Hydrogen Royd²³ Reneker²⁴ the defects and molecular motions occurring in crystalline structural simplicity and its atomic composition, which is satisfactorily analysed using the available potential energy functions²⁶. The major drawbacks of most a fold surface' is surrounded by identical neighbouring energetics analysis are: (a) neglecting the entropic
folds (see fold labelled 1 in later *Figures* 3, 5 and 7) contribution to the Gibb's free energy; and (b) neglect folds (see fold labelled 1 in later *Figures 3, 5* and 7). contribution to the Gibb's free energy; and (b) neglecting
Even though experimental evidence of the hobit the effects of concentration, molecular weight, nature of Even though experimental evidence of the habit the effects of concentration, molecular weight, nature of the solvent and temperature (unless potential energy

factors must always be considered when comparing separation. Thus comparison of their (110) and (200)

Based on evidence gathered from studies on truncated common reference state. diamond-shaped single crystals of polyethylene with six In contrast to the above two studies on chain folding in sectors, four $\{110\}$ sectors and two $\{200\}$ -type sectors, polyethylene crystals^{18,19}, Oyama *et al.* sectors, four $\{110\}$ sectors and two $\{200\}$ -type sectors, it is commonly believed that the long chains of it is commonly believed that the long chains of packing of the folds into a fold surface and determined the polyethylene are folded by distinctly different folds that lie conformation of a fold as the minimum of surface en polyethylene are folded by distinctly different folds that lie conformation of a fold as the minimum of surface energy, parallel to the growth faces on which they were deposited, not of conformation energy. However, they r parallel to the growth faces on which they were deposited, not of conformation energy. However, they restricted the so that the folds in the $\{110\}$ and $\{200\}$ sectors lie in the folds at the observed cell dimensions so that the folds in the {110} and {200} sectors lie in the folds at the observed cell dimensions, limited the torsion {110} and {200} planes, respectively²⁷. The '{200}'- angles to *trans* or *gauche* only, and conside ${10}$ and ${200}$ planes, respectively²⁷. The ' ${200}$ '- angles to *trans* or *gauche* only, and considered only one type sectors and the ' (200) ' fold are often written within packing habit for the (110) folds, i.e type sectors and the '(200)' fold are often written within packing habit for the (110) folds, i.e. the RG I packing quotes in this paper because we shall see later that the with the fold surface parallel to the (0.01) p quotes in this paper because we shall see later that the with the fold surface parallel to the (001) plane.
situation on the $\{200\}$ planes is complicated by packing To overcome the shortcomings of the previous situation on the {200} planes is complicated by packing To overcome the shortcomings of the previous studies,
problems.
this work examines the following aspects of chain folding

in a $\{110\}$ plane, is parallel to the diagonal of the unit cell (1) Creation of minimum-energy (110) and (200) and creates planes of closest packing in polyethylene folds in isolation, and in the presence of six identical crystals. The stem separation distance of a '(2 00)' fold is neighbouring folds. The (110) fold packing habits equal to the b cell dimension and creates the second most considered are: (a) RG I $\{(111)(110)\}$; (b) RG I closely packed planes in polyethylene crystals. It is $\{(3\ 1\ 1)(1\ 1\ 0)\}$; (c) RG II $\{(1\ 1\ 2)(1\ 1\ 0)\}$; and (d) RG II important to note that even 30 years after the discovery of $\{(3\ 1\ 2)(1\ 1\ 0)\}.$ polyethylene single crystals, there is no direct evidence, (2) Minimization of the energy with respect to the unit-
either by i.r. spectroscopy¹⁷ or X-ray diffraction¹¹, of the cell dimensions and the setting angle fo existence of a ' (200) ' fold array, unlike that of the (110) habit considered. folds. Our work will prove to be consistent with this (3) Investigation of the interactions between a straight statement. Segment and the fold surface.

In the past, several groups¹⁸⁻²¹ proposed the (110) fold packing conformations of tight chain folds in crystals of long-
Reneker and Geil⁷ suggested models for the $(1\ 1\ 0)$ fold chain polyethylene. The main approach to predicting the packing that are now commonly referred to as the RG I conformation of a fold was to assign different torsion and RG II packing habits. In the RG I packing habit, the (internal rotation) and bond angles within the folded folds in successive fold planes are aligned along the $\lceil 100 \rceil$ segment ofthe long chain and then to minimize the energy and [0 I0] directions *(Figure 3).* The packing of the of the fold. The conformation giving the lowest energy for molecular zig-zags (straight segments) in the interior of

contradictory, and the differences in their results mainly arise because of the following factors: develops. For $n = 1$, the folds in adjacent (110) planes in

rotation and bending (which cause changes in the torsion fiat-based or non-fiat-based depending on whether the and bond angles, respectively) and bond stretching or adjacent folds within the *same* { 1 10} planes are displaced compression, were not considered. \blacksquare or not. When $n = 1$, and the adjacent folds within the same

outright by fixing the stem separation distance at the experimentally observed cell dimensions.

deformation allowed in the folded segments of the within the same $\{110\}$ fold plane are staggered by two polyethylene molecule was that of the torsion angles. repeat distances (Figure 4). Petraccone *et al.*¹⁹ allowed all three deformation modes In the RG II packing habit, the folds in the successive but still held the stems of the fold at the experimentally $\{110\}$ fold planes are aligned in the [110] and [130] observed separation distance. Also, they used different directions as shown in *Figure* 5. RG II differs from RG I in reference points for the (110) and (200) folds. They that every other fold plane is rotated by 180 $^{\circ}$ about the defined their reference state as follows: the zero-energy chain axis through the stem of a chain-folded molecule. state for a fold involving m methylene units consisted of The packing of the molecular zig-zags in this case requires two facing segments of $m/2$ units in the planar zig-zag that successive fold planes be displaced by $(n+\frac{1}{2})$ repeat conformation, with the same relative orientation and distances in the [001] direction. As in the case of RG I separation as the two straight segments that are joined packing, the pyramid is either flat-based or non-flatseparation as the two straight segments that are joined together by the fold. By defining the reference states in this based depending on whether the adjacent folds within the way, the zero-energy state for the (110) fold is the same $\{110\}$ plane are displaced or not. For way, the zero-energy state for the $(1 10)$ fold is the interaction of two straight segments at about 4.4 Å {(112)(110)} flat-based pyramid is formed when there is separation, while the zero-energy state for the (20 0) fold *no* staggering of the folds within the same { 1 10} planes, is the interaction of two straight segments at about 5.0 Å whereas a $\{(3\ 1\ 2)(1\ 1\ 0)\}$ non-flat-based pyramid is

calculated and experimental results. The state of the fold energies is questionable, since they do not have a

oblems.
The (110) fold, which connects two adjacent segments in polyethylene crystals using energetics analysis. in polyethylene crystals using energetics analysis.

cell dimensions and the setting angle for every packing

BACKGROUND FOLD PACKING MODELS

the fold was considered the most plausible.
The results of the previous studies¹⁸⁻²⁰ are (110) fold planes be displaced by an integral number of are (110) fold planes be displaced by an integral number of inly repeat distances (2.54 Å) . For $n=0$, a flat lamellar crystal (1) Differences in the potential energy functions used. *Figure 3* are displaced by one repeat distance and a (2) All possible modes of deformation, i.e. internal hollow pyramidal crystal is formed. The pyramid is either (3) Several possible conformations were ignored $\{110\}$ planes are *not* staggered, then a $\{(111)(110)\}$ flat-
tright by fixing the stem separation distance at the based pyramidal crystal with a slope of 31.6° is formed whereas a $\{(3 11)(110)\}$ non-flat-based pyramidal crystal In the study by McMahon *et al.*¹⁸, the only mode of with a slope of 49° is formed when the adjacent folds

Figure 3 Schematic of RG I fold packing. (a) Projection of a section of the crystal onto a (001) plane. (b) Projection of a section of the crystal **b** 6 \blacksquare onto a $(0 1 0)$ plane. (Hydrogen atoms have been omitted for clarity)

Figure 4 Illustrations of the relationship of the oblique terminal planes, (1 1 1) and (3 1 1) in this case, to the polyethylene unit cell for RG $\frac{1}{1}$ {(111)(110)} and RG I {(311)(110)} packing habits $\frac{1}{10}$ $\frac{1}{100}$ **7.4** A

formed when the adjacent folds within the same $\{110\}$ plane are staggered by one repeat distance. The slope of Figure 6 Illustrations of the relationship of the oblique terminal the pyramids for these two cases are about 1° and 30° , planes, (112) and 312) in this case, to the polyethylene unit cell for RG respectively (Figure 6). $\prod \{(112)(110)\}$ and RG II $\{(312)(110)\}$ packing habits

 b Experimentally, the observed angles of inclination of the (1 10) fold surface along the a axis are $18-19^{\circ}$ (refs. 3) and 14) and 29° (ref. 3). These angles of inclination along the a axis would result from RG I $\{(1\ 1\ 1)(1\ 10)\}$ and RG II $\{(312)(110)\}$ fold packing habits (Figures 4 and 6). These packing habits form pyramidal crystals with slopes \bullet of about 32 $^{\circ}$ and 30 $^{\circ}$, respectively.

Figure 5 Schematic of RG II fold packing. (a) Projection of a section of (3 $\overline{1}$ 1) (1 $\overline{1}$ 1) the crystal onto a (0 0 1) plane. (b) Projection of a section of the crystal onto a $(0 10)$ plane. (Hydrogen atoms have been omitted for clarity)

the crystal onto a (001) plane. (b) Projection of a section of the crystal minimum-energy cell dimensions and setting angle.

onto a (100) plane. (Hydrogen atoms have been omitted for clarity) (b) Sequentially repeating st onto a (100) plane. (Hydrogen atoms have been omitted for clarity)

(2 0 O) fold packing

Figure 7 shows one possible packing habit of the (200) RESULTS AND DISCUSSION folds with the folds in the adjacent fold planes displaced by one repeat distance. In this case, the fold surface would *Creation of the isolated fold* lie along the $\{101\}$ planes. Other possible low-index The starting point of this study was the creation of a planes parallel to the (200) fold surface are $\{201\}, \{301\}$ (110) and a (200) chain-folded molecule using and {302}, depending on the staggering sequence of the SCEAM program. The values of the torsion angles and

and MOLBD3, described previously^{28,29}. SCEAM are constrained by the surrounding stems. Therefore, to generates a molecule by specifying the bond lengths, bond make a realistic model of a chain-folded molecule, it was angles and torsion angles. CREAM minimizes the necessary initially toconstrain the stems and then to carry packing energy of the molecules relative to their positions out repeated minimization using the MOLBD3 program
in the packed structure. MOLBD3 minimizes the energy by sequentially releasing the constraints near the folded of a molecule with respect to its bond lengths, bond angles and torsion angles. This can optionally be carried out in The stem ends of the (110) and (200) folds were the presence of static neighbouring molecules to take into constrained at separation distances of 4.42 and 4.92 A,

These potential functions have been extensively used in energies of the isolated (110) and (200) folds were calculations on hydrocarbons and give quite reasonable 5.67 kcal mol⁻¹ of folds and 5.20 kcal mol⁻¹ of folds, calculations on hydrocarbons and give quite reasonable results²⁵ at 200 K, a temperature representative of those respectively, relative to the planar zig-zag conformation for the data from which the potential energy parameters of the molecule. were derived. The unstrained values of the molecular Next, the energy of each isolated fold as a function of parameters used in the calculations were as follows: $C-C-C$ the stem separation distance was calculated. It was found

 (200) bond angle, 112.0°; H-C-H bond angle, 109.4°; C-C bond length, 1.534 Å ; and C-H bond lengths, 1.090 Å . The central chain-folded molecule was 20 methylene units
(1 1 0) (60 stame) in Janeth (see Figure 2, 5 and 7). In agree (110) (710) $(60 atoms)$ in length (see *Figures 3, 5 and 7)*. In any packing habit, the length of the neighbouring chain-
 h folded molecules (marked as 2 to 7 in Figures 3, 5 and 7) 7 b folded molecules (marked as 2 to 7 in *Figures 3, 5* and 7) was adjusted such that the basal plane of the packing was (170) : $\sqrt{2\pi^2}$ /(110) parallel to the (001) plane and the total number of methylene units in the packing was 140. The fold portion (200) of the chain-folded molecules consisted of about $7-8$

> The calculation procedure for both ${110}$ and ${200}$ fold domains was as follows:

> (1) Creation of an isolated fold using the torsion and bond angles from earlier calculations for an isolated fold¹⁹, with the straight segments (stems) having the unstrained parameters given above.

> (2) Minimization of the energy of an isolated fold at fixed stem separation distance, using the MOLBD3

> (3) Minimization of the energy of an isolated fold with respect to the stem separation distance.

> (4) Minimization of the packing energy of the seven neighbouring folds packed in an array as shown in *Figures 3b* and 5*b* with respect to the unit-cell dimensions and the setting angle.

(5) Minimization, using the MOLBD3 program, of the \mathbf{b} \longrightarrow a
fold energy of the central fold in the presence of six
neighbouring folds, which were constrained at the Figure 7 Schematic of (200) fold packing. (a) Projection of a section of neighbouring folds, which were constrained at the crystal onto a (0.0.1) plane (b) Projection of a section of the crystal minimum-energy cell dimensi

> minimum packing energy (i.e. surface energy) was determined.

 (110) and a (200) chain-folded molecule using the (2 0 0) folds, the bond angles determined by Petraccone *et al.19* were used for creating the folds in the 60-atom chain-folded COMPUTATIONAL METHOD molecules, which served as the starting folded segments for this study.

The method used is a combination of the array-energy Minimization on Petraccone's (110) and (200) folds minimization scheme used in the previous calculations²⁵ was done using the MOLBD3 program by keeping was done using the MOLBD3 program by keeping and the molecular-energy minimization technique different combinations of the atomic coordinates fixed for employed in the computer program MOLBD3²⁸.
Some of the carbon atoms in the chain-folded molecules. some of the carbon atoms in the chain-folded molecules. The computer programs used were SCEAM, CREAM In a real crystal, the stems of any chain-folded molecule by sequentially releasing the constraints near the folded portion of the chain-folded molecule.

account the intermolecular interactions. respectively, close to the experimental values at $200 K^{30}$. The steric potentials used were those in set I of ref. 26. After repeated minimization, it was found that the

Figure 8 Energy of the fold, relative to the planar zig-zag form of the molecule, as a function of stem separation distance: (a) (1 10) fold; (b)

that the *minimum* energies of the isolated (110) and (200) folds were 5.61 kcal mol⁻¹ of folds and 5.20 kcal mol⁻¹ of folds, respectively, relative to the planar zig-zag form of the molecule, at stem separation distances of approximately 4.37 and 4.92 \AA , respectively. *Figure 8*. shows the energies of (110) and (200) folds as a function of stem separation distance.

Table 1 presents the contributions from the bond deformation energy and intramolecular non-bonded **Table** 3 Minimum energies of isolated (110) and (200) folds, relative interaction energy of the isolated fold to the overall to the planar zig-zag form of the molecule (kcal mol⁻¹ of folds) for our
deformation energy of the bonding topology of the folds and the folds proposed by McMahon deformation energy of the bonding topology of the minimum-energy (110) and (200) isolated folds. It is important to note that the values of both the bond deformation energy and the non-bonded interaction energy of the isolated folds in *Table 1* are independent of the stem length. As shown in *Table 2*, the non-bonded interaction energy of the fold was calculated by subtracting the sum of the intermolecular interaction energy between stems and the energy of the unstrained planar zig-zag form of a 20-methylene-unit all-*trans*

a (straight-chain) molecule from the non-bonded interaction energy of the 20-methylene-unit chain-folded 5.65 molecule. Note that the non-bonded interaction energy of a 20-methylene-unit chain-folded molecule is the sum of the intramolecular non-bonded interaction energy of the isolated fold, the energy of the unstrained planar zig-zag intermolecular interaction energy between the stems of • the 20-methylene-unit chain-folded molecule.

^{5.55} Based on our calculated values of the minimum fold
^{5.55} anargies the minimum surface energies for the (1.10) and energies, the minimum *surface* energies for the (110) and respectively. These values are in general agreement with the fold surface energy value of 93 ± 8 erg cm⁻² obtained by Hoffman *et al. 22* by thermodynamic means.

Table 3 compares the energies of the (110) and (200) folds, relative to the planar zig-zag form of the molecule,

Stem separation distance (A) folds, relative to the planar zig-zag form of the molecule (kcal mol⁻¹ of folds). The values in parentheses are the minimum surface energies

٠		Fold type		
		(110)	(200)	
	Stem separation distance	4.37 \AA	4.92 Å	
	Energy of: (1) Bond deformation (bond angles, rotation angles and			
	bond length) in the fold (2) Non-bonded interaction in	4.78	3.30	
٠	the fold ^a (3) The fold, relative to the planar zig-zag form of the	0.83	1.90	
	molecule, i.e. $(1) + (2)$	5.61 $(102.5 \,\mathrm{erg\,cm^{-2}})$	5.20 $(95.6 \,\mathrm{erg\,cm^{-2}})$	

See *Table 2*

Stem separation distance (Å)			Fold type
Figure 8 Energy of the fold, relative to the planar zig-zag form of the		(110)	(200)
molecule, as a function of stem separation distance: (a) $(1 1 0)$ fold; (b) (200) fold	Stem separation distance	4.37 Å	4.92 Å
that the <i>minimum</i> energies of the isolated (110) and (200) folds were 5.61 kcal mol $^{-1}$ of folds and 5.20 kcal mol $^{-1}$ of	Energy of: (1) Non-bonded interaction of the 20- methylene-unit chain-folded molecule (2) Intermolecular interaction between the stems of the 20-methylene-unit chain-folded	3.47	5.34
folds, respectively, relative to the planar zig-zag form of	molecule	-4.20	-3.40
the molecule, at stem separation distances of approximately 4.37 and 4.92 Å, respectively. Figure 8 shows the energies of (110) and (200) folds as a function	(3) Planar zig-zag form of the 20-methylene- unit straight-chain molecule (4) Non-bonded interaction in the fold, i.e.	6.84	6.84
of atam comonation diatongo	$(1) - [(2) + (3)]$	0.83	1.90

and Oyama *et al.²⁰*, recalculated using our potential energy parameters and computational method

= Stems only indicates the packing of seven planar zig-zag molecules

b Folds only indicates the packing of seven folded molecules, each of 20 methylene units

Folds + stems indicates the packing of seven folded molecules, each of 100 methylene units

of our folds with those proposed by McMahon *et al.*¹⁸, upon expansion of the fold structures was also reported Petraccone *et al.*¹⁹ and Oyama *et al.*²⁰, the latter energies by McMahon *et al.*¹⁸ Petraccone *et al.*¹⁹ and Oyama *et al.*²⁰, the latter energies recalculated using our potential energy parameters and Another interesting aspect of our results is the method. Use of our potential energy parameters and dependence of the setting angle on the packing habit. We method allows us to compare the energies of the folds found the setting angles in RG I and RG II to be close to proposed by past workers¹⁸⁻²⁰ with our folds on an 48° and 42° , respectively. In the past, several groups³¹⁻³⁷ identical basis. Interestingly, even though the trend in all have experimentally measured the settin four studies is identical and shows that the energy of an different forms of polyethylene, crystallized at different isolated (200) fold is less than that of an isolated (110) temperatures. Even though previous result fold, only Petraccone and coworker's¹⁹ and our work specific trend, the range in which the setting angles were show that the minimum energy for isolated (110) and obtained is $41-49^\circ$. One study³⁷ concluded that the (2 0 0) folds are nearly equal. However, among the four setting angle was a function of temperature. Our results studies, our study predicts the lowest-energy fold surface, indicate that packing habit also influences the setting

(1 1 O) fold packing temperature.

I $\{(1\ 1\ 1)(1\ 10)\}$; (b) RG I $\{(3\ 1\ 1)(1\ 10)\}$; (c) RGII dimensions in the presence of the folds (and vice versa), ${(112)(110)};$ and (d) RG II ${(312)(110)}$. In each habit, the sum of the packing energy of a 20-methylene-unit the fold packing energy was minimized with respect to the chain-folded molecule surrounded by its six neighbouring unit-cell dimensions and the setting angle. *Table 4* shows chain-folded molecules and the interaction energy of two
the unit-cell dimensions and the setting angles for the all-*trans* segments (of 40 methylene units each) the unit-cell dimensions and the setting angles for the minimum-energy packing of seven (1 1 0) folds in RG I surrounded by their neighbouring *all-trans* segments, for and RG II. Also shown in *Table 4* are the unit-cell different cell dimensions, was also calculated. Note that dimensions and the setting angles for (a) the packing of this simulates one-half of the typical thickness of lamellar seven straight segments within the core of the crystal and single crystals. The minimum energy for the RG I (b) the packing of seven long chain-folded molecules of $\{(1\ 1\ 1)(1\ 10)\}$ packing was found at $a=7.2$ Å and 100 methylene units each to form a crystal with RG I $b = 5.0$ Å. (Cell dimensions were examined in increments ${(111)(110)}$ habit. of 0.1 Å.) The decrease in the minimum-energy b cell

and the setting angles from *Table 4*, it is seen that some of these results are quite unique and unexpected. The unit- straight segments in the crystalline core on the folds is to cell dimensions of the (110) fold packings were calculated bring their ends closer to each other. Using the same
to be slightly larger than the experimental values at energy parameters as have been used in this study, t to be slightly larger than the experimental values at energy parameters as have been used in this study, the 200 K, the temperature at which the potential energy parameters as have been used in the crystalline 200 K, the temperature at which the potential energy parameters are most valid. The major difference between the calculated lattice dimensions of the fold surface and the experimental values was the increase in the b cell of 48°. The experimentally obtained unit-cell dimensions dimension. This increase in the b cell dimension resulted of polyethylene crystals at 200 K are $a = 7.27 \text{ Å}$ dimension. This increase in the b cell dimension resulted of polyethylene crystals at 200 K are $a = 7.27$ A and from an increase in the stem separation distance during $b = 4.91 \text{ Å}^{30}$. Our results, taken in context of from an increase in the stem separation distance during $b=4.91 \text{ A}^{30}$. Our results, taken in context of the earlier
the cyclic minimization of the packing energy of seven calculations²⁵ and the experimental data³⁰ the cyclic minimization of the packing energy of seven calculations²⁵ and the experimental data³⁰, indicate that folds using CREAM, and that of the central fold, in the the influence of the fold in changing the unit-c folds using CREAM, and that of the central fold, in the the influence of the fold in changing the unit-cell
presence of the surrounding six folds, using MOLBD3. dimensions of the straight segments in the crystalline core presence of the surrounding six folds, using MOLBD3. The stem separation distance increased from 4.37 to 4.44 is negligible, if any. The core influences the fold more than and 4.65 Å in RG I and RG II packings, respectively. A the folds influence the core.
similar trend of decreasing fold energy for isolated folds Table 5 shows the packing energy of $(1 1 0)$ folds in RG I similar trend of decreasing fold energy for isolated folds

have experimentally measured the setting angle in temperatures. Even though previous results $31-37$ show no angle. Packing habit, in turn, may be affected by

The $(1\,1\,0)$ fold packing habits considered were: (a) RG To assess the effect of the crystalline core on the cell On analysing the results on the unit-cell dimensions dimension from 5.2 Å (for the most favourable RG I fold d the setting angles from *Table 4*, it is seen that some of packing) to 5.0 Å indicates that the influence of t packing energy of straight organisms $z-z$ are more was earlier calculated 2^5 , to a greater accuracy, to be a minimum for $a = 7.26$ Å and $b = 4.94$ Å at a setting angle

and RG II habits at experimentally observed unit-cell of the torsion and bond angles are different in each fold, dimensions at room temperature $(a=7.4 \text{ Å}$ and depending on the packing habit. This indicates that $b = 4.96$ Å). The setting angles chosen for RG I and RG II topology of the fold is substantially influenced by the packing were 48° and 42°. respectively. Interestingly, at packing habit. There does not appear to be a sin packing were 48° and 42°, respectively. Interestingly, at packing habit. There does not appear to be a single these dimensions and setting angles, the energies of RG I strongly dominant fold topology that dictates the pack these dimensions and setting angles, the energies of RG I and RG II packings are almost identical. This has some habit. important ramifications. Voight-Martin and Mandelkern³ have observed that a slight change in the (200) fold packing crystallization temperature can lead to drastic changes in (200) fold packing was performed using the minimum-
the slope of the pyramidal crystals of polyethylene. They energy (200) fold created earlier. The folds in adjac the slope of the pyramidal crystals of polyethylene. They energy (200) fold created earlier. The folds in adjacent found that the slope that the (110) fold surface makes $\{200\}$ fold planes were displaced by one repea found that the slope that the (1 10) fold surface makes $\{200\}$ fold planes were displaced by one repeat distance, with the *a* axis (i.e. \tan^{-1} (*c*/*a*)) was 18° and 27° for thereby forming a low-index plane, namely with the a axis (i.e. tan⁻¹ (c/a)) was 18° and 27° for thereby forming a low-index plane, namely (10 1), which crystallization at temperatures of 127°C and 131.5°C, is commonly observed in truncated single crystals of crystallization at temperatures of 127° C and 131.5° C, is commonly observed in truncated single crystals of respectively. These slopes correspond to the slopes that polyethylene³. The folds were initially packe respectively. These slopes correspond to the slopes that polyethylene³. The folds were initially packed at the fold surface makes with the *a* axis by packing the experimentally observed room-temperature cell dimenthe fold surface makes with the *a* axis by packing the experimentally observed room-temperature cell dimen-
(1.10) folds in the RG I $\{(11)(110)\}$ and the RG II sions of $a=7.40 \text{ Å}$ and $b=4.94 \text{ Å}^{30}$. Interestingly, (110) folds in the RG I $\{(111)(110)\}$ and the RG II {(3 12)(1 10)} packing, respectively, as shown in *Figures 4* packing the (2 0 0) folds at the experimentally observed and 6. The experimental data of Voight-Martin and Mandelkern³, taken in context of our energetics about 40 kcal mol⁻¹ of folds. The minimum energy of calculations, indicate that minor changes in crystalli-
zation conditions may lead to significant changes in the -41.6 kcal mol⁻¹ of folds at cell dimensions of $a = 8.4$ Å zation conditions may lead to significant changes in the

fold proposed by McMahon *et al.*¹⁸ and Petraccone *et* dimensions are radically different from the experiment a^{1} and compare them with our (110) folds packed in observed orthorhombic unit-cell dimensions al.¹⁹, and compare them with our (110) folds packed in observed orthorhombic unit-cell dimensions of different packing habits. Petraccone's (110) fold and our polyethylene single crystals. different packing habits. Petraccone's (110) fold and our polyethylene single crystals.
(110) folds packed in different packing habits are in The results on the (200) fold packing could possibly $(1 10)$ folds packed in different packing habits are in The results on the (200) fold packing concellent agreement with the recent experimental data on arise from two limitations of the analysis. excellent agreement with the recent experimental data on arise from two limitations of the analysis.
(1 1 0) folds¹⁷, which indicates that the torsion angles in (1) Owing to limitations on computer time and storage (1 10) folds¹⁷, which indicates that the torsion angles in (1) Owing to limitations on computer time and storage the (1 10) folds are \ldots *atagg*^{-g-} \ldots . By comparing the requirements, it was only possible to simul the (110) folds are ... *gtggg* g^t By comparing the requirements, it was only possible to simulate the top fold topology of the four (110) folds in different packing surface. By neglecting the influence of the lowe topology of the four $(1\,10)$ folds in different packing habits, we found that even though the overall topology of surface, distorted unit-cell dimensions may result because any of the four folds is ...gtggg⁻g⁻t..., the actual values the stems of the chain-folded molecules shown in *Figure 1*

experimentally observed unit-cell dimensions at room temperature³ experimentally observed unit-cell dimensions at room temperature.
intermolecular influences. The too large a dimension is
 $(a=7.4 \text{ Å}$ and $b=4.96 \text{ Å}$)

Fold packing habit	Setting angle chosen (deg)	Fold packing energy (kcal mol ^{-1} of folds)		
RG I $\{(1\ 1\ 1)(1\ 10)\}$	48	-20.5		
RG II $\{(312)(110)\}$	42	-21.0		

crystal habit.
In Table 6 we present the topology of the isolated (110) is comparable to the (110) fold packing, the cell In Table 6 we present the topology of the isolated (110) is comparable to the (110) fold packing, the cell is no proposed by McMahon *et al.*¹⁸ and Petraccone *et* dimensions are radically different from the experim

have a natural tendency to spread apart in order to minimize the energy of the fold. However, the reduced b Table 5 Packing of (110) folds in RG I and RG II packing habits at cell dimension indicates that this is easily overcome by primarily dictated by intermolecular packing rather than fold conformation. In addition, similar packing of the (110) folds, to simulate the top fold surface, did not create excessive distortions in the cell dimensions of the minimum-energy packing of the $(1 1 0)$ folds from the experimentally observed cell dimensions (see *Table 4).*

Table 6 Values of torsion angles (ϕ) and bond angles (θ) (deg) for the isolated (1 1 0) fold proposed by McMahon *et al.*¹⁸ and Petraccone *et al.*¹⁹, and our (1 1 0) fold packed in different packing habits. Also shown are the experimentally determined torsion angles in the fold¹⁷. For location of the angles, refer to *Figure 1. Trans (t)* and *gauche* (g^{\pm}) bonds with internal rotation significantly displaced from the minima of the rotational potential are indicated with a prime (i.e. t' or g^{\pm} ')

Fold packing habit			This work				
	Other work	RG I		RG II			
	Isolated fold ¹⁸	Isolated fold ¹⁹	$\{(1\ 1\ 1)(1\ 1\ 0)\}\$	$\{(3\ 1\ 1)(1\ 1\ 0)\}$	$\{(1\,1\,2)(1\,1\,0)\}\$	$\{(3\,1\,2)(1\,1\,0)\}$	Experimental ¹⁷
ϕ_1	200	74.8 (q^+)	77.2 (q^+)	81.8 (q^+)	85.2 (g^+)	86.9 (g^+)	g^+
ϕ_2	248	174.8(t)	182.0 (t)	180.0 (t)	183.2(t)	183.0(t)	
ϕ_3	77	68.4 (q^+)	66.7 (a^+)	63.8 (a^+)	67.6 (a^+)	67.4 (q^+)	g^+
ϕ_4	86	91.6 (a^{+})	87.9 (g^+)	89.2 (g^{+})	88.0 (a^{+})	86.1 (a^{\dagger})	g^+
ϕ_5	206	$-58.4~(q^{-})$	$-65.5(a^{-})$	$-66.5 (q^{-})$	$-70.5(a^{-})$	$-70.9(g^{-})$	g^{\dagger}
ϕ_6	82	$-64.4(a^{-})$	$-62.1(g^-)$	$-63.5(a^{-})$	$-63.1(g^-)$	$-62.9(g^-)$	g^-
ϕ_7	235	174.4 (t)	182.9(t)	181.1(t)	180.2(t)	182.0 (t)	
$\theta_{1,2}$	112	113.6	113.96	114.44	112.58	112.57	
	112	112.7	113.27	113.74	115.59	115.58	
	112	114.8	115.50	115.29	114.05	114.24	
	112	114.8	116.74	116.63	116.80	116.90	
$\theta_{2,3}$ $\theta_{3,4}$ $\theta_{4,5}$ $\theta_{5,6}$	112	116.2	117.06	116.45	116.10	116.13	
$\theta_{6,7}$	112	114.0	117.07	117.12	116.89	116.92	

type sectors of truncated single crystals of polyethylene according to the

 $\{(10, 1)(2, 00)\}$, may not be the only possibility, and other surface is parallel to the $\{1, 1, 0\}$ planes.
Patel and Farmer²⁵, using the same energy parameters arrangements could give similar energies and more rate and Farmer , using the same energy parameters as those used in this study, found that the interaction reasonable cell dimensions. However, the model selected as those used in this study, found that the interaction
is consistent with experimental observation³. Eurther, the interaction energy of an eight-methylene unit on is consistent with experimental observation³. Further, the energy of an eight-methylene unit on the lateral{ 110_f
 511_g expecting at a strategy of an eight-methylene unit on the lateral{ 110_f folds are already staggered such that further staggering growth face was -7.5 kcal mol-1. Compared to the fold surface, the minimum interaction energy on the fold surface, the (i.e. other likely packing habits) would probably have $\frac{1}{2}$ minimum interaction energy on the lateral $\{110\}$ surface only slight influence on the minimum-energy cell dimensions.

Presuming the validity of our results---namely that (2 0 0) fold packing is energetically reasonable, but only at highly unusual cell dimensions—there are two possible 30conclusions. One possibility is that in the (2 0 0) sectors of significantly different from those in the (1 10) sectors. We are unaware of any experimental evidence in support of $\frac{1}{2}^{20}$ this. An alternative explanation is that the (200) sectors are *not* in fact formed by '{200}' folds at all.

polyethylene single crystals, the unit-cell dimensions are significantly different from those in the (110) sectors. We are unaware of any experimental evidence in support of this. An alternative explanation is that the (2 This viewpoint, however, evokes the following $\frac{5}{6}$ 10 question. If the (200) fold packing does not exist, then how are the truncated diamond-shaped single crystals with $\{200\}$ planes formed? One possible explanation³⁸ $\frac{1}{5}$ 0 can be that the long-chain molecules are arranged in a fashion along the $\{200\}$ planes as shown in *Figure 9.* If this is the situation, then the folds along the $\{200\}$ planes \blacksquare -10 would be nearly identical to the folds in the $\{1\,10\}$ planes with a stem separation distance of about 4.4 Å, and yet the fold planes in the ' $\{200\}$ '-type sectors would be $_{-20}$ the experimental observation of Basset, Frank and Translation normal to the fold surface (A) Keller¹¹ that the '{200}'-type sectors of collapsed parallel to the $\{200\}$ planes. On examining our resurts, eight-methylene-unit segment was parallel to the (110) fold planes, and the C-C-C backbone was inclined at 20° to the fold surface as shown in faces that he has often observed in truncated single *Figure 11*

crystals could be the direct consequence of the chain \ // folding pattern shown in *Figure 9.*

\ / Interaction of a straight segment with the fold surface

The molecule used to examine the interaction between a straight segment and the fold surface was an eight-\ / methylene-unit *all-trans* segment. Interaction of an eight- \\ / methylene-unit *all-trans* segment with the minimum energy fold surface (i.e. the fold surface of RG I $\{(1 1 1) (1 1 0)\}$ packing) was examined by translating and rotating the straight segment on planes *parallel* to the fold surface. Rotation about the centre and around the axis of \ the straight segment was allowed. Finally, after determining the minimum-energy position, the all-*trans* segment was placed at the minimum-energy position and translated *normal* to the minimum-energy fold surface. The interaction energy of the eight-methylene-unit all *trans* segment with the fold surface of RG I {(1 1 1)(1 1 0)}
as a function of the distance between the segment and
the fold surface is charge in the segment and as a function of the distance between the segment and the fold surface is shown in *Figure 10*. The minimum interaction energy was -6.33 kcal mol⁻¹ (see *Figure 10*).

The minimum-energy position of the straight segment is shown in *Figure 11*. It lies parallel to the $\{110\}$ plane above the groove between two adjacent $\{1\,10\}$ fold planes (2 0 o) at a distance of 3.75 A from the fold surface (see *Figure* Figure 9 Proposed fold packing along the ${200}$ planes in the ${200}$ '- *ll*). The angle that the plane of the C-C-C backbone of type sectors of muncated single crystals of polyethylene according to the the straight segm personal communication from Professor Keller, University of Bristol Interestingly, our results are in accordance with the recent studies^{16,17} on polyethylene single crystals using a polymer decoration technique, which indicated that the (2) The choice of fold packing habit, specifically the preferred direction of short-chain molecules on the fold
10.1(200)) may not be the only possibility and other surface is parallel to the $\{1\ 1\ 0\}$ planes.

truncated single crystals of polyethylene have pleats Figure 10 Interaction energy of. an eight-methylene-unit straight parallel to the {200} planes. On examining our results, segment for translation *normal* to the RG I fold surface. The axis of the eight-methylene-unit segment was parallel to the (110) fold planes, and

energy, i.e. 3.75 Å, above the fold surface: (a) top view; (b) side view along the $\lceil 110 \rceil$ direction

is less by about 1.2 kcal mol^{-1}. Accordingly, an adsorbed REFERENCES segmental molecule on the fold surface would tend to 1 Bassett, D. C. and Keller, A. *Phil. Mag.* 1962, 7, 1553 migrate from the fold surface to the lateral surface where it 2 Bassett, D. C., Frank, F. C. and Keller, A. *Phil. Mag.* 1963, 8, could make a crystallographically coherent attachment to 1753
the substrate. This is in agreement with the theory ³ Voight-Martin, I. G. and Mandelkern, L. J. Polym. Sci., Polym. the substrate. This is in agreement with the theory 3 Voight-Martin, I.G. and Mandelkern, L. *J. Polym. Sci., Polym. Phys. Edn.* 1981, 19, 1769 proposed by Hoffman *eta/.* 22'39, that surface adsorption 4 Jaccodine, R. *Nature* 1955, 176,305 (i.e. physical adsorption) of the polymer molecules takes 5 Till, *P. H. J. Polym. Sci.* 1957, 24, 301 place prior to their actual crystallographically coherent 6 h .

⁷ place prior to their actual crystallographically coherent 6 Keller, A. Phil. Mag. 1957, 2, 1171
attachment to the substrate. The substrate.
8 Keller, A. and O'Connor, A. Disc. Faraday Soc. 1958, 25, 114

CONCLUSIONS 10

Energetics analysis has been used to investigate aspects of *Phys. Edn.* 1984, 22, 1901

chain folding in polyethylene single crystals This 11 Bassett, D. C., Frank, F. C. and Keller, A. Phil. Mag. 1963, 8, chain folding in polyethylene single crystals. This investigation has focused on creation of isolated $(1\ 10)$ 12 Bassett, D. C. and Keller, A. *Phil. Mag.* 1961, 6, 345 and (200) folds, packing of folds, and interactions of 13 *Bassett, D.C., Frank, F.C. and Keller, A. Nature* 1959, 184, 810 *Bassett,D.C.,Frank, F.C. and Keller, A. Nature* 1959, 184, 810 a molecular segment with the fold surface. The results 14 Niegisch, W. D. and Swan, *P. R. J. Appl. Phys.* 1960, 31, 1906
provide interesting insights into the nature of the packing 15 Jing, X. and Krimm, S. J. Polym. Sci. provide interesting insights into the nature of the packing 15 Jing, X. and the influence of the folds on the cell 20, 1155 involved, and the influence of the folds on the cell $\frac{20,1155}{20,1155}$
dimensions of the expected. In porticular, the important 16 Wittmann, J. C. and Lotz, B. J. Polym. Sci., Polym. Phys. Edn. dimensions of the crystal. In particular, the important 1985, 23, 205 information gleaned from this study is as follows. 17 Ungar, G. and Organ, S. J. to be published

 b An isolated (110) fold has higher strain energy of deformation of the bonding topology, relative to the planar zig-zag form of the molecule, compared to the isolated (200) fold. However, the packing of the (200) folds into a fold surface indicates that a $crystallographically reasonable '200)'$ -type fold surface would appear to be impossible.

> The bonding topology of an isolated minimum-energy (110) fold is similar to that of a (110) fold packed into a minimum-energy fold surface. The stem separation distance in both cases is about 4.4 Å .

The energetics of packing the folds into a fold surface representing a portion of a single crystal indicate that the **a** $\frac{3}{2}$ influence of the straight segments in the crystalline core on the folds is to bring the ends of the folds closer to each other, whereas the influence of the folds in changing the cell dimensions of the crystalline core is negligible.

> Packing the $(1 10)$ folds in RG I and RG II habits at experimentally observed cell dimensions indicates that there is almost equal preference for either RG I or RG II

 $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ are $\sum_{i=1}^{n}$ The setting angle is a function of the fold packing habit.

The energetically most favourable position of a straight $[100]$ \rightarrow / segment above the fold surface is at a distance of about 3.75 A with the straight segment somewhat nestled into a groove between the ${110}$ fold planes.

A straight segment's interaction energy with a $\{1\,1\,0\}$ Accordingly, an adsorbed segmental molecule on the fold surface would tend to migrate from the fold surface to the $[0\ 0\ 1]$ \downarrow \downarrow coherent attachment to the substrate.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the many fruitful discussions with Professor Andrew Keller of the [1T0] $\rightarrow \rightarrow \rightarrow$ University of Bristol and Drs John Hoffman, Robert Miller and Mark Mansfield of Michigan Molecular Figure 11 RG I {(111)(110)} fold surface with an eight-methylene-
unit straight segment located at the position of minimum interaction
this work from the National Science Foundation this work from the National Science Foundation, Division of Materials Research, Polymer Program Grant DMR77-20604.

-
-
-
-
-
-
-
- 8 Keller, A. and O'Connor, A. *Disc. Faraday Soc.* 1958, 25, 114
9 Holland V. F. and Lindenmeyer, P. H. *J. Polym, Sci.* 1962, 57
- 9 Holland, V. F. and Lindenmeyer, *P. H. J. Polym. Sci.* 1962, 57,
- 10 Voight-Martin, I. G. and Mandelkern, *L. J. Polym. Sci., Polym.*
- 1739
-
-
-
-
-
- 18 McMahon, P. E., McCullough, R. L. and Schlegd, *A. A, J. Appl.* Ch. II *Phys.* 1967, 38, 4123 28 Boyd, *R. H. J. Chem. Phys.* 1968, 49, 2574
- 19 Petraccone, V., Corradini, P. and Allegra, *L. J. Polym. Sci.* 1972, 29 Farmer, B. L., M.S. Thesis, Department of Macromolecular 38, 419
38, 419 Science. Case Western Reserve University. 1972
- 20 Oyama, T., Shiokawa, K. and Ishimaru, *T. J. Macromol. Sci.* ²⁰ 31 *Phys.* (*B*) 1973, **8**, 229 *Phys. (B)* 1973, 8, 229 31 Bunn, C. W. *Trans. Faraday Soc.* 1939, 35, 482
Mazur, J., Khoury, F. and Fanconi, B. Bull. Am. Phys. Soc. 1982, 32 Kasai, N. and Kakudo, M. Rep. Prog. Polym. Ph
- 21 Mazur, J., Khoury, F. and Fanconi, B. *Bull. Am. Phys. Soc.* 1982, 32 Kasai, N. and Kakudo, M. *Rep. Prog. Polym. Phys. Japan* 1968, **27** (3), 289; *ibid.* 1983, **28** (3), 393 **11, 145**
- 22 Hoffman, J. D., Davis, G. T. and Lauritzen, J. I. in 'Treatise on 33 Avitabile, G., Napolitano, R., Pirozzi, B., Rouse, K. D., Thomas, York, 1975, Vol. 3, Ch. 7
Boyd, R. H. J. Polym. Sci., Polym. Phys. Edn. 1975, 13, 2345 34
- 23 Boyd, R. H. J. Polym. Sci., Polym. Phys. Edn. 1975, 13, 2345 34 Kavesh, S. and Schultz, J. M. J. Polym. Sci. (A-2) 1970, 8, 243
24 Reneker, D. H., Fanconi, B. M. and Mazur, J. J. Appl. Phys. 35 Iohara, K., Imada, K. and 24 Reneker, D. H., Fanconi, B. M. and Mazur, *J. J. Appl. Phys.* 35 *Iohara, K.,Imada,K.andTakayanagi,M.Polym.J.* 1970,3,356
- 25 Farmer, B. L. and Eby, R. K. J. *Appl. Phys.* 1974, 45, 4229; *ibid.* 1975, 46, 4209; *Polymer* 1979, 20, 363; Farmer, B. L. and Patel, 37 1975, 46, 4209; *Polymer* 1979, 20, 363; Farmer, B. L. and Patel, 37 Kawaguchi, A., Ohara, M. and Kobayashi, *K. J. Macromol. Sci.–Phys.* (B) 1979, 16 (2), 193
-
- 26 Williams, D. E. J. Chem. Phys. 1967, **47**, 4680 38 Keller, A., private communication
27 Geil, P. H. 'Polymer Single Crystals', Wiley, New York, 1963, 39 Hoffman, J. D. and Lauritzen, J. I. J. Appl. Phys. 1973, 44, 4340 Geil, P. H. 'Polymer Single Crystals', Wiley, New York, 1963,

-
- Science, Case Western Reserve University, 1972
30 Swan, P. R. J. Polym. Sci. 1962, 56, 403
-
-
-
- Solid State Chemistry' (Ed. N. B. Hannay), Plenum Press, New M.W. and Willis, B. T. M. J. Polym. Sci., Polym. Lett. Edn. 1975, York, 1975, Vol. 3, Ch. 7

13, 351
	-
	-
	- Kawaguchi, A., Matsui, R. and Kobayashi, K. *Bull. Inst. Chem. Res. Kyoto Univ.* 1977, 55, 217
	- *A. Sci.-Phys.* (B) 1979, 16 (2), 193
 A. Keller, A., private communication
	-
	-